Ch. 4
p. 88 The first equation in (c) should be changed to read

\[\omega_5 = \frac{(1.20)(14.3)(144)(21.4)}{(0.2)(7.78)} \left[\left(\frac{200}{14.3} \right)^{0.1667} - 1 \right] = 187.7 \text{ Btu/lbm} \]

Ch. 5
p. 149 Problem 5.2 The concentration should be \(x = 0.25 \), not \(x = 0.25 \).

Ch. 8
p. 214 Second equation from the top should read \(\eta_w = \frac{w_2 - w_1}{w_s^* - w_1} \)

Ch. 10
p. 265 Equation (10.4). The last multiplier on the left hand side of the equation should be \((h_{g,t} - h_{f,w}) \) not \(h_{f,g,w} \).

p. 265 Equation (10.5). The last multiplier on the left hand side of the equation should be \((h_{g,t} - h_{f,w}) \) not \(h_{f,g,w} \).

Ch. 12
p. 340 12\(^{th}\) line from top, the equation for \(\dot{Q}_{lat} \) is missing the second parenthesis that should appear as follows: \(\ldots (1041.8 \text{ Btu/lbm}_w) / \ldots \)

p. 341 Example 12.4. In the equation of 11\(^{th}\) line from bottom, 94.1 \(\Rightarrow \) 75, 0.0317 \(\Rightarrow \) 0.0310.

Example 12.4. In the equation of 8\(^{th}\) line from bottom, \(C_p = 0.240 + \ldots \) \(\Rightarrow \) \(C_p = 0.240 + \ldots \)

Example 12.4. The subscript on lbm in the 11\(^{th}\), 6\(^{th}\), 4\(^{th}\) line from the bottom should be a \(w \), not a \(v \).

Example 12.4. In the last equation, the subscript on lbm should be a \(w \), not \(v \). 0.0317 \(\Rightarrow \) 0.0310, 55.6 \(\Rightarrow \) 53.9.
Ch. 13

p. 387 Example 13.1. In the equation bottom line, 14.2 \(\Rightarrow\) 14.42

p. 403 Eq. (13.24a), Eq.(13.24b) are not necessary. Use Eq.(13.25)

p. 406 Example 13.5. In the first line of the solution, the second angle should be \(\Psi = -15^o\).

p. 410 Problem 13.8. The last sentence should read: Determine the number of hours that the \textit{south-facing} side would be sunlit by direct solar radiation on June 22.

Problem 13.9. The last sentence should read; “Assume the sun is a sphere with diameter \(D_s = 1.39 \times 10^6\) km.”

Ch. 14

p. 455 Example 14.3. The units corrections of \(a_s, a_w\);

\[
a_s = 0.0156 \left(\frac{ft^3}{min}\right) \cdot (in^{-4} \cdot ^\circ F^{-1}) \quad \Rightarrow \quad a_s = 0.0156 \left(\frac{ft^3}{min}\right)^2 \cdot (in^{-4} \cdot ^\circ F^{-1})
\]

\[
a_w = 0.0039 \left(\frac{ft^3}{min}\right) \cdot (in^{-4} \cdot mph^{-2}) \quad \Rightarrow \quad a_w = 0.0039 \left(\frac{ft^3}{min}\right)^2 \cdot (in^{-4} \cdot mph^{-2})
\]

p. 464 Example 14.5. In the table, the vapor resistance of the insulation should be 0.047 Rep, not 0.47 Rep, and the total vapor resistance at the bottom should be 2.28 + \(Z_{yy}\) Rep.

Example 14.5. In the table, the thermal resistance of plywood should be 0.3125 \(\left(\frac{hr \cdot ft^2}{Btu}\right)\), not 0.20 \(\left(\frac{hr \cdot ft^2}{Btu}\right)\), since \(\frac{1}{k} = 1.25\), not \(k = 1.25\), and the total thermal resistance should be 21.98, not 21.87.

p. 465 Example 14.5. The last part of the last two equations should read:

At plane 4, ... -2.28 = 12.2 Rep, not ...-2.70 = 11.8 Rep

At plane 5, ... -2.28 = 15.2 Rep, not ...-2.70 = 14.8 Rep

The first sentence in the last paragraph should read: Therefore we would select a vapor retarder with a resistance greater than 15.2 Rep.

p. 467 Problem 14.13. The area of “fireplace with glass doors” should be given. Let’s assume it as \(1 \times 0.75m = 0.75m^2\)
Ch. 15

p. 525 Table 15.21. The values of Copiers should be changed below.

<table>
<thead>
<tr>
<th>Maximum Input</th>
<th>Standby Input</th>
<th>Recommended Rate of Heat Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watts</td>
<td>Btu/hr</td>
<td>Watts</td>
</tr>
<tr>
<td>Copiers</td>
<td>460-1700</td>
<td>1570-5800</td>
</tr>
</tbody>
</table>

Ch. 16

p. 534 The last terms on the right-hand sides of equations (16.1) and (16.2) that are written in terms of \(w \) ICL should be divided by the area, A.

p. 537 Table 16.3. Subheadings over the columns for the days should be ICL/A, not ICL.

p. 538 Table 16.4. Subheadings over the columns for the days should be ICL/A, not ICL.

Ch. 17

p. 564 Equation 17.15 should be:

\[
LF = \frac{q_{loss} - q_{gain}}{q_{capacity}}
\]

p. 581 Problem 17.12. On the last line, the heating value of fuel oil should be 140,000 Btu/gal, not 140,000 Btu/lbm.