1. Consider the circuit shown below with input voltage, \(v(t) \), and output voltage, \(v_o \).

![Circuit Diagram]

A. (2 pts.) Find the state-variable equations for the system. Use the energy variables, \(e_c \) and \(i_L \), as states. Include an equation for the output, \(v_o \).

B. (1 pts.) Put the state-variable equations in matrix form:

\[
\dot{x} = Fx + Gu \\
y = Hx + Ju
\]

where \(x = \begin{bmatrix} e_c \\ i_L \end{bmatrix} \) is the state vector, \(u = \begin{bmatrix} v_i(t) \end{bmatrix} \) is the input, and \(y = \begin{bmatrix} v_o \end{bmatrix} \) is the output. \(F, G, H, \) and \(J \) are matrices.

For problems 2 and 3, the unity-gain feedback, proportional closed-loop control is considered. The configuration is shown below.

![Feedback Control Diagram]

\(G(s) \) is the plant, \(r(t) \) is the reference and \(d(t) \) is the disturbance. \(y \) is the output, \(e \) is the error, and \(u \) is the control input. \(K \) is the proportional gain.
2. \[G(s) = \frac{Y(s)}{U(s)} = \frac{1}{(s+1)^2(s+2)} \]

A. (1 pt.) Find the differential equation relating \(u \) and \(y \).

B. (3 pts.) Find the range of \(K \) (both positive and negative) for which the system is stable.

C. (2 pts.) We wish to use the Ziegler-Nichols ultimate sensitivity method to find parameters for a P.I.D. controller. Find the ultimate gain, \(K_u \), and the ultimate period, \(P_u \), for this method. Restrict your consideration to positive gains.

3. \[G(s) = \frac{Y(s)}{U(s)} = \frac{1-s}{s(1+s)} \]

A. (2 pts.) Find the closed-loop transfer function, \(G_{cl}(s) = \frac{Y(s)}{R(s)} \), for proportional control. Find the characteristic equation and identify the undamped natural frequency, \(\omega_n \), and the damping ratio, \(\zeta \), as a function of \(K \).

B. (3 pts.) Find the open-loop step response, that is, find \(y(t) \) when \(u(t) = 1(t) \). The system is initially at rest and \(d(t) = 0 \). Sketch the step response.

C. (1 pts.) We wish to use the Ziegler-Nichols process reaction curve method to find parameters for a P.I.D. controller. Find the required parameters, \(R \) and \(L \), from the step response.

D. (1 pts.) Find the recommended value of \(K \) for proportional control using the Ziegler-Nichols process reaction curve parameters. What are the resulting values of \(\omega_n \) and \(\zeta \)?

E. (2 pts.) What is the system type with regard to input tracking? What would the steady-state error be for \(r(t) \) being a unit step, a unit ramp, or a unit parabola?

F. (2 pts.) What is the system type with regard to disturbance rejection? What would the steady-state error be for \(d(t) \) being a unit step, a unit ramp, or a unit parabola?