Hydraulic Component Modeling Example: Simulink Modeling of a Pressure Compensated Flow Control (PCFC) Valve

1 Principles

Refer to figure from handout.

- The resistor type PCFC valve consists of two orifices, a fixed orifice and a variable orifice, in series.
- Since orifices are in series, flow rates through both of them are the same.
- By maintaining the pressure across the fixed orifice, the flow rate is fixed.
- The variable orifice is adjusted based on the pressure difference (ΔP) across the fixed orifice
 - if $\Delta P = P_c - P_b$ is greater than desired, the variable orifice is closed
 - if $\Delta P = P_c - P_b$ is smaller than desired, the variable orifice is opened.
- Internal portings and a spring sprung spool achieves this feedback.

2 Orifice modeling

Suppose the fixed orifice is described by:

$$Q = C_2 \sqrt{P_c - P_b} \quad (1)$$

and the variable orifice is described by:

$$Q = c_1(x) \sqrt{P_a - P_b} \quad (2)$$

where P_a is the inlet pressure, P_b is the outlet pressure, P_c is the pressure in between the two orifices.

From several lectures ago, we found for 2 needle valves in series:

$$Q = C(x) \sqrt{P_a - P_b}$$

where

$$\frac{1}{C^2(x)} = \frac{1}{c_1^2(x)} + \frac{1}{c_2^2}$$

From this, we can determine P_c also:

$$P_c = P_a - Q^2/c_1^2(x) = P_a - \frac{C^2(x)}{c_1^2} (P_a - P_b).$$
3 Spool displacement

The orifice opening for the variable orifice is determined by the pressure difference \(\Delta P = P_c - P_b \).

Let \(x \) be the displacement of the spool when the spring is uncompressed. If the spool has mass \(m \), damping coefficient \(b \), the spring constant is \(K \), and the area on which the pressure acts is \(A \), then by considering the free body diagram for the spool, and by applying Newton’s second law:

\[
m\ddot{x} = -b\dot{x} - Kx + A(P_b - P_c)
\]

Note the directions of these forces.

In Laplace domain, we have the transfer function:

\[
\frac{X(s)}{P_b(s) - P_c(s)} = \frac{A}{ms^2 + bs + K}
\]

4 Orifice area modeling

Finally, we need to determine the actual orifice opening. For simplicity, we consider

\[
A_1(x) = A_0 + w \cdot x
\]

and the actual area is given by \(A(x) = A_1(x) \) if \(0 \leq A_1(x) \leq A_{max} \), otherwise \(A(x) = 0 \) if \(A_1(x) \leq 0 \) and \(A(x) = A_{max} \) if \(A_1(x) \geq A_{max} \). This saturation limits can easily be implement using simulink’s (saturation block).

The orifice coefficient \(c_1(x) = C_d A(x) \), \(C_d \) is some discharge coefficient.