Transform Solutions to LTI Systems – Part 4

April 2, 2013

Final Value Theorem

Given \(F(s) \), how can we find \(\lim_{t \to \infty} f(t) \)

Final Value Theorem (FVT):

\[
\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s)
\]

When is the FVT applicable?

1). \(F(s) \) should have no poles in the right half of the complex plane (Real part should not be +v).

2). \(F(s) \) should have no poles on the imaginary axis, except at most one pole at \(s=0 \).

Examples:

a) \(F(s) = \frac{A}{s} \), find \(\lim_{t \to \infty} f(t) \)

\[
\lim_{s \to 0} sF(s) = \lim_{s \to 0} \frac{A}{s} = A
\]

b) \(F(s) = \frac{A}{s^2} \), FVT cannot be applied.

Note: \(\mathcal{L}^{-1}\{F(s)\} = \mathcal{L}^{-1}\left\{\frac{A}{s^2}\right\} = At \).

Final value is not defined.
c) \(F(s) = \frac{\omega}{s^2 + \omega^2} \)

\[
\lim_{s \to 0} F(s) = \lim_{s \to 0} \frac{s \cdot \omega}{s^2 + \omega^2} = 0
\]

\(\mathcal{L}^{-1}\{F(s)\} = \sin \omega t \)

The poles are \(s^2 + \omega^2 = 0 \), \(s^2 = -\omega^2 \), \(s = \pm j\omega \)

Real part=0

Hence the FVT cannot be applied.

d) \(F(s) = \frac{s}{s^2 + \omega^2} \)

The FVT cannot be applied.

Example on use of IVT and FVT

\(F(s) = \frac{s^2 + 2s + 4}{s^3 + 3s^2 + 2s} \)

IVT: Can it be applied? YES

\[
f(0^+) = \lim_{s \to \infty} s F(s) = \lim_{s \to \infty} \frac{s^3 + 2s^2 + 4s}{s^3 + 3s^2 + 2s} = \lim_{s \to \infty} \frac{1 + \frac{2}{s} + \frac{4}{s^2}}{1 + \frac{3}{s} + \frac{2}{s^2}} = 1
\]

FVT: Can it be applied?

Poles are obtained from:
\[
s^3 + 3s^2 + 2s = 0
\]

or
\[
s(s^2 + 3s + 2) = 0
\]

or
\[
s(s + 2)(s + 1) = 0
\]

Note: A second order polynomial with positive coefficients always has roots with \(-ve\) real parts.

e.g. \(ms^2 + bs + k = 0\) \(\Rightarrow\) the poles are always stable.

A higher order polynomial (3\(^{rd}\) order or higher) need not be stable if all coefficients are positive.

However, even if one coefficient is \(-ve\), the system will be unstable.

(will have at least one pole with +ve real part)

The FVT is applicable in this example.

\[
limit_{s \to 0} sF(s) = \lim_{s \to 0} \frac{s^3 + 2s^2 + 4s}{s^3 + 3s^2 + 2s} = \lim_{s \to 0} \frac{s^2 + 2s + 4}{s^2 + 3s + 2} = \frac{4}{2} = 2
\]

Example:

\[
F(s) = \frac{5s^2 + 8s - 5}{s^2(s^2 + 2s + 5)}
\]

Find \(f(t)\), feature: Repeated pole at \(s=0\).

\[
F(s) = \frac{As + B}{s^2} + \frac{Cs + D}{s^2 + 2s + 5}
\]

After calculation, it turns out

\[
A = -1, B = 2, C = -2, D = 2
\]

Hence
\[
F(s) = \frac{-s + 2}{s^2} - \frac{2s - 2}{s^2 + 2s + 5} = -\frac{1}{s} + \frac{2}{s^2} - \frac{2(s - 1)}{(s + 1)^2 + 4}
\]

\[
= -\frac{1}{s} + \frac{2}{s^2} - \frac{2(s + 1 - 2)}{(s + 1)^2 + 4}
\]

\[
= -\frac{1}{s} + \frac{2}{s^2} - \frac{2(s + 1)}{(s + 1)^2 + 2^2} + \frac{4}{(s + 1)^2 + 2^2}
\]

\[
= -\frac{1}{s} + \frac{2}{s^2} - \frac{2(s + 1)}{(s + 1)^2 + 2^2} + \frac{2}{(s + 1)^2 + 2^2}
\]

\[
f(t) = -1 + 2t - 2e^{-t}\cos 2t + 2e^{-t}\sin 2t
\]

Example: To illustrate how to handle numerator and denominator of the same order.

\[
\frac{2s^2 + 7s + 8}{s^2 + 3s + 2} = \frac{2(s^2 + 3s + 2) + s + 4}{s^2 + 3s + 2}
\]

\[
= \frac{2(s^2 + 3s + 2)}{s^2 + 3s + 2} + \frac{s + 4}{s^2 + 3s + 2} = 2 + \frac{s + 4}{(s + 2)(s + 1)}
\]

\[
= 2 + \frac{A}{s + 2} + \frac{B}{s + 1} = 2 - \frac{2}{s + 2} + \frac{3}{s + 1}
\]

Hence: \(f(t) = 2\delta(t) - 2e^{-2t} + 3e^{-t}\)
Standard Representation of a Second Order System

\[m \ddot{x} + b \dot{x} + kx = F(t) \]

In the Laplace domain,

\[m \left(s^2 X(s) - sx(0) - \dot{x}(0) \right) + b \{ sX(s) - x(0) \} + kX(s) = F(s) \]

\[(ms^2 + bs + k)X(s) = F(s) + (ms + b)x(0) = m\dot{x}(0) \]

\[X(s) = \frac{1}{ms^2 + bs + k} F(s) + \frac{(ms + b)x_0 + mv_0}{ms^2 + bs + k} \]

\[\frac{1}{ms^2 + bs + k} \rightarrow \text{Zero} - \text{state response} \]

\[\frac{(ms + b)x_0 + mv_0}{ms^2 + bs + k} \rightarrow \text{Zero} - \text{input response} \]

For a stable system, the zero input response \(\rightarrow 0 \) as \(t \rightarrow \infty \).

The zero-state response need not converge to zero as \(t \rightarrow \infty \).

It will have some terms that converge to zero and some terms that do not converge to zero.

For example: if \(F(s) = \frac{F_0}{s} \)

\[\lim_{t \to \infty} f(t) = \frac{F_0}{k} \ (\text{does not converge to zero}) \]

The terms that do not converge to zero constitute the **steady state response** of the system, and all the terms that converge to zero constitute
the transient response.

If the force is a sinusoid, the steady state response will be a sinusoid.
If the force is some others bounded periodic function, the steady state response will be a bounded periodic function.

The transfer function \(\frac{1}{ms^2 + bs + k} \) can be written in the following standard 2nd order form:

\[
\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}
\]

April 4, 2013

Continuing with the previous m, k, b system.
If the initial conditions are zero,

\[
X(s) = \frac{1}{ms^2 + bs + k} F(s)
\]

To write in the standard second order form,

1). Divide numerator and denominator by m,

\[
X(s) = \frac{\frac{1}{m}}{\frac{s^2}{m} + \frac{b}{m}s + \frac{k}{m}} F(s)
\]

Coefficient of \(s^2 \) in the denominator is now 1.

2). Need to make the constant terms in the numerator and denominator equal
\[X(s) = \frac{1}{k} \frac{k}{s^2 + \frac{b}{m} s + \frac{k}{m}} F(s) \]

Compare with

\[\frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2} \]

We get

\[\frac{k}{m} = \omega_n^2, 2\zeta \omega_n = \frac{b}{m} \]

\(\omega_n \): Undamped natural frequency of the system

\[\zeta = \frac{1}{2\omega_n m} = \frac{1}{\frac{\omega_n^2}{2\sqrt{k/m}}} = \frac{b}{2\sqrt{km}} \]

\(\zeta \) is called the damping ratio.

If \(\zeta > 1 \), the system is said to be over-damped. It has no overshoot and no oscillations.

If \(\zeta < 1 \), the system is said to be under-damped. It has oscillatory behavior and it has overshoot.

To see why, note that the characteristic equation is:

\[s^2 + 2\zeta \omega_n s + \omega_n^2 = 0 \]

\[s^2 + 2\zeta \omega_n s + \omega_n^2 \zeta^2 - \zeta^2 \omega_n^2 + \omega_n^2 = 0 \]

\[(s + \zeta \omega_n)^2 - \zeta^2 \omega_n^2 + \omega_n^2 = 0 \]

\[(s + \zeta \omega_n)^2 = \omega_n^2 (\zeta^2 - 1) \] \(\cdots \cdots \cdots \cdots \)

If \(\zeta < 1 \), then:

\[(s + \zeta \omega_n) = \pm j \omega_n \sqrt{1 - \zeta^2}, \quad j = \sqrt{-1} \]
Hence the poles are:

\[s = -\zeta \omega_n \pm j\omega_n \sqrt{1 - \zeta^2} \]

Since

\[X(s) = \frac{1}{k} \cdot \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2} F(s) \]

If \(F(s) = \frac{1}{s} \) (the response to a step input), then

\[X(s) = \frac{1}{k} \cdot \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2} \cdot \frac{1}{s} \]

After partial fraction expansion, the response will be of the type:

\[x(t) = x_{ss} + A e^{-\zeta \omega_n t} \sin \omega_d t + B e^{-\zeta \omega_n t} \cos \omega_d t \]

(Likely \(x_{ss} = \frac{F}{k} \) from previous experience)

where \(\omega_d = \omega_n \sqrt{1 - \zeta^2} \) \hspace{1cm} (Imaginary part of the poles)

\(\omega_d \) is called the damped natural frequency. Thus the response of the system is oscillatory.

On the other hand, consider \(\zeta > 1 \),

The character eqn gives:

\[(s + \zeta \omega_n)^2 = \omega_n^2 (\zeta^2 - 1) \]

Hence the poles are:

\[s = -\zeta \omega_n \pm \sqrt{\omega_n^2 (\zeta^2 - 1)} \]

\[s = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1} \]

Hence the response to

\[X(s) = \frac{1}{k} \cdot \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2} \cdot \frac{1}{s} \]
is given by:

\[x(t) = x_{ss} + Ae^{-(\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1})t} + Be^{-(\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1})t} \]

Thus the response is not oscillatory. No overshoot.

What about \(\zeta = 1 \)?

The value of \(\zeta = 1 \) is called critical damping. It is the transition point between no oscillations and oscillations.

The poles are given in this case by:

\[s = -\zeta \omega_n = -\omega_n \]

Hence

\[X(s) = \frac{1}{k} \cdot \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2} \cdot \frac{1}{s} = \frac{1}{k} \cdot \frac{\omega_n^2}{s^2 + 2\omega_n s + \omega_n^2} \cdot \frac{1}{s}(\text{for } \zeta = 1) = \frac{1}{k} \cdot \frac{\omega_n^2}{(s + \omega_n)^2} \cdot \frac{1}{s} \]

After partial fraction expansion and inverse Laplace transforms, the response is found to be:

\[x(t) = x_{ss} + Ae^{-\omega_n t} + Bte^{-\omega_n t} \]

(Why? \(\mathcal{L}^{-1}\left\{\frac{1}{(s+a)^2}\right\} = te^{-at} \))

Again the response is exponential \(\Rightarrow \) no oscillations.
Frequency Response of Linear Time Invariant Systems

Complex Numbers: Recall that every complex number has a magnitude and a phase.

Example: \(z = a + bj \), \(j = \sqrt{-1} \)

\(a \) is called the real part of \(z \), \(a = \text{Re}(z) \)

\(b \) is called the imaginary part of \(z \), \(b = \text{Im}(z) \)

Magnitude of \(z \): \(|z| = \sqrt{a^2 + b^2} = \sqrt{\text{Re}(z)^2 + \text{Im}(z)^2} \)

Phase of \(z \): \(\angle z = \tan^{-1} \left(\frac{b}{a} \right) = \tan^{-1} \left(\frac{\text{Im}(z)}{\text{Re}(z)} \right) \)

Both the magnitude and phase of a complex number are real.

What is the steady state response of any LTI system for a sinusoidal input of frequency \(\omega \)?

Assume that the system is stable: All its poles have negative real parts.

For example:
\[X(s) = \frac{1}{ms^2 + bs + k} F(s) \]

If \(F(s) = \frac{\omega}{s^2 + \omega^2} \) (sinusoid)

Then \[X(s) = \frac{1}{ms^2 + bs + k} \cdot \frac{\omega}{s^2 + \omega^2} \]

After partial fraction expansion, and inverse Laplace transforms, we will find:

\[x(t) = A e^{-\zeta \omega_n t} \sin \omega_d t + B e^{-\zeta \omega_n t} \cos \omega_d t + C \sin \omega t \]