Mechanical Engineering Undergraduate Writing Program

Introduction: The ability to communicate effectively is essential in engineering. It is not sufficient to have an idea; that idea must be communicated clearly and concisely to other members of a design team, possibly spread throughout the globe, to managers, to a newspaper reporter, to the general public, or even to oneself through a design notebook.

At the University of Minnesota, the faculty recognizes that students do not enter the mechanical engineering undergraduate program as competent technical writers and that many are not proficient in standard academic writing. It therefore is the responsibility of the Department of Mechanical Engineering to provide an education in technical communication for its undergraduates with the expectation that every undergraduate receiving a degree in mechanical engineering become competent in written technical communication. It is the responsibility of students to know that the department has engineering writing expectations and standards and that they will experience some form of engineering writing instruction every semester they are in the program.

SECTION #1: DISCIPLINE-SPECIFIC WRITING CHARACTERISTICS

Effective writing in mechanical engineering is:
- Pointed, concise and factual, avoiding redundancy, abstraction, and extraneous information
- Data-driven for credibility
- Systematic, logical and efficient in describing and solving problems
- Seamless in its integration of textual, numeric, and graphic information
- Explanatory, often involving depiction of spatial objects and description of complex technical concepts and data
- Predictable in its frequent use of prescribed formatting and structure
- Collaboratively authored as work is often conducted with a geographically distributed team
- Presented using multi-media applications of text and graphics, including oral presentations, posters and web sites
- Written and formatted in ways that are appropriate to technical and/or non-technical audiences

SECTION #2 DESIRED WRITING ABILITIES

At graduation, undergraduate students in mechanical engineering should be able to:
1. Apply knowledge of physics, mathematics, and engineering in their writing
2. Record and analyze activity related to laboratories and design projects
3. Visually represent designs and explain salient features of a part or concept
4. Synthesize and summarize key points
5. Strategize and demonstrate engineering project metrics such as productivity, costs and time to completion
6. Analyze the audience and create a document that meets the needs of the audience
7. Represent themselves professionally
8. Explain, discuss, and demonstrate physical apparatus
9. Integrate visual, textual and oral explanations
10. Communicate among a distributed design team using web-based collaboration tools
11. Create team-written documents
12. Create reports in the style of academic journal articles
13. Create reports in the style of professional engineering reports
14. Write according to faculty approved style guidelines

The desired writing abilities are the expected outcomes for students graduating in Mechanical Engineering. Each outcome is mapped to one or more of the desired writing characteristics, is expressed in one or more writing products, and has a means for assessment as shown in the following table.

<table>
<thead>
<tr>
<th>OUTCOME</th>
<th>CHARACTERISTICS</th>
<th>EXPRESSION</th>
<th>ASSESSMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply knowledge of physics, mathematics, and engineering in their writing</td>
<td>efficient
clear logic
seamless integration of numeric, graphic and textual information
appropriately technical</td>
<td>problem set
design report</td>
<td>sampled problem sets from selected engineering science courses
ME4054 design report
ME4xxx lab report</td>
</tr>
<tr>
<td>Record and analyze activity related to laboratories and design projects</td>
<td>accurate
thorough
chronologically-sequenced
descriptive
replicable</td>
<td>lab notebook
lab report
design notebook</td>
<td>ME2011 notebook
ME2011 lab report
ME4031 lab report
ME4xxx lab report
ME4054 notebook</td>
</tr>
<tr>
<td>Represent designs visually and explain salient features of a part or concept</td>
<td>concrete depiction of spatial objects
comprehensive description of complex technical data and concepts</td>
<td>annotated hand sketch
CAD drawing</td>
<td>ME2011 portfolio
ME4054 report</td>
</tr>
<tr>
<td>Synthesize and summarize key points</td>
<td>pointed
concise</td>
<td>abstract
executive summary</td>
<td>ME4031 lab report
ME4054 design report</td>
</tr>
<tr>
<td>Strategize and demonstrate metrics such as productivity, costs and time to completion</td>
<td>accurate
credible</td>
<td>project proposal
design report</td>
<td>ME4054 statement of work
ME4054 design report</td>
</tr>
<tr>
<td>Analyze the audience and create a document that meets the needs of the audience</td>
<td>persuasive choices of evidence
appropriate use of technical information
appropriate tone</td>
<td>project proposal
design report
professional correspondence</td>
<td>ME4054 statement of work
ME4054 design report</td>
</tr>
<tr>
<td>Represent themselves professionally</td>
<td>credible
clear
persuasive
correct mechanics</td>
<td>resume
cover letters
e-mail
professional correspondence</td>
<td>ME2011 resume</td>
</tr>
<tr>
<td>Explain, discuss, and demonstrate physical apparatus</td>
<td>accurate
concise
text and graphics</td>
<td>design report
project report</td>
<td>ME4054 design report</td>
</tr>
<tr>
<td>Integrate visual, textual, and oral explanations</td>
<td>clear
persuasive
credible</td>
<td>poster
multi-media application
oral presentation</td>
<td>ME2011 technical presentation
ME4054 design review presentation</td>
</tr>
<tr>
<td>Communicate among a distributed design team using web-based collaboration tools</td>
<td>concise
data-driven</td>
<td>design project web site</td>
<td>ME4054 project web site</td>
</tr>
</tbody>
</table>
| Create team-written documents | • accurate
• concise
• credible | • design report | • ME4054 design report |
|-------------------------------|---------------------------------|------------------|----------------------|
| Create reports in the style of academic journal articles | • predictable, and prescribed formatting and structure | • research report | • ME5090 research report
• honors thesis |
| Create reports in the style of professional engineering reports | • predictable, and prescribed formatting and structure | • design report | • ME4054 design report |
| Write according to faculty approved style guidelines | • predictable, and prescribed formatting and structure
• correct mechanics | • all genres | • all |
SECTION #3 INTEGRATING WRITING INTO THE UNDERGRADUATE CURRICULUM

The Mechanical Engineering Writing Program is based on the following assumptions:

- Students do not enter the undergraduate program as competent technical writers.
- It is the responsibility of the department to participate in writing instruction for its students.
- Department faculty generally will not spend extra time teaching or evaluating writing mechanics.
- Problem sets, lab reports and design reports are the three main forms of writing done by undergraduate students in mechanical engineering.

Overview of the Curriculum

Figure 1 displays the mechanical engineering undergraduate curriculum with the circles around the courses where significant writing instruction occurs. Because of the structured curriculum with strict pre-requisites in the core courses, the combination of the circled courses and the emphasis on communication in the engineering science problem set courses means that writing touches students every semester of the suggested curriculum.

Figure 1. The Mechanical Engineering undergraduate curriculum. Courses targeted for writing instruction are circled. Courses offered within the department have thick circles. Courses with thin circles are service courses taught outside the department.
Early writing instruction is covered in the service courses WRIT 1301/1401, one of which is required of all University of Minnesota students, with some students required to take WRIT 1201 in addition. Additional early instruction occurs in service courses Phys 1301W and Phys 1302W that primarily cover the writing of lab reports. The core courses offered by the department that have writing instruction are ME 2011 Introduction to Engineering, ME4031W Measurements Lab and ME4054W Design Projects.

The remainder of the core curriculum courses offered by the department include engineering science courses that rely significantly on problem sets, for example, ME 3331/2/3, the three-course thermal science sequence, ME 3221/2, the two-course design and manufacturing sequence, ME 3281 System Dynamics and Control and IE 4521 Statistics, Quality and Reliability. Students also take one senior lab course from a selection of six offered within the department and four technical electives, some of which can be outside the department.

Within the core curriculum engineering science courses, the department expects certain standards for communicating technical content through the weekly problem sets delivered by students. Within the senior lab courses, the department expects certain standards in the writing of laboratory reports that builds on the lab report writing instruction and expectations introduced in ME 4031W, the pre-requisite course, and earlier in ME2011, the introductory course.

The following table illustrates the types of writing done in each course.

<table>
<thead>
<tr>
<th>Course</th>
<th>Types of Writing</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRIT 1301/1401</td>
<td>academic writing</td>
</tr>
<tr>
<td>PHYS 1301W/1302W</td>
<td>lab notebook, lab reports, problem sets</td>
</tr>
<tr>
<td>ME 2011</td>
<td>sketching, CAD, oral presentation, design notebooks, short technical report, lab report, design report, resume, portfolio</td>
</tr>
<tr>
<td>ME 3281</td>
<td>problem sets</td>
</tr>
<tr>
<td>ME 3331/2/3</td>
<td>problem sets</td>
</tr>
<tr>
<td>ME 3221/2</td>
<td>problem sets, group authored design report</td>
</tr>
<tr>
<td>ME 4521</td>
<td>problem sets</td>
</tr>
<tr>
<td>ME 4031W</td>
<td>lab notebook, lab reports</td>
</tr>
<tr>
<td>ME 4xxx (Senior Labs)</td>
<td>lab notebook, lab reports</td>
</tr>
<tr>
<td>ME 4054W</td>
<td>design notebook, project web site, project proposal, oral presentation, poster, group-authored design report</td>
</tr>
</tbody>
</table>

The three core courses offered within the department that have significant writing instruction are listed below.

<table>
<thead>
<tr>
<th>Course</th>
<th>Writing Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 2011</td>
<td>Instruction on maintaining a design notebook, writing a lab report, delivering a technical presentation, writing a resume, informal professional writing and other technical writing forms. Evaluation and critical review of student writing. Introduction to department writing standards and style guides.</td>
</tr>
<tr>
<td>ME 4031W</td>
<td>Instruction on maintaining lab notebooks and writing lab reports. Formal and informal evaluation of writing.</td>
</tr>
<tr>
<td>ME 4054W</td>
<td>Instruction on maintaining a design notebook, writing technical memos, writing group-authored design reports, communicating among a distributed team. Formal and informal evaluation of writing including review of drafts.</td>
</tr>
</tbody>
</table>
The first pillar of the writing program is that students receive detailed, discipline specific writing in three core courses (ME 2011, ME 4031W and ME 4054W). In ME 2011 students learn a range of writing genres, including some that are covered in more detail in later courses. ME 4031W focuses on lab notebooks and lab reports while ME 4054W is concerned with writing related to design projects including notebooks, proposals and reports.

The second pillar of the writing program is courses where writing is valued but less emphasis is placed on explicit writing instruction. This includes the core and elective engineering science courses that are problem set based. Students in these courses are provided with instruction in how to write a problem set and expected to deliver problem sets that meet department expectations for communication. While writing mechanics is not the focus of these courses, are expected to communicate technical information clearly including problem sets, equations, graphs, tables, charts and sketches. Writing instruction is in the form of acquainting students with available resources on how to write a problem set, including the department's problem set style guide and the instructor making clear in the syllabus and in opening lectures that quality of communication on problem sets is important for the course and important for the student's growth as an engineer. The expectation for well-written problem sets is that in some of the courses, part of the grading for a problem set will be based on the writing along with the technical content. The other set of courses in this category are the six senior lab courses. Here students are provided with resources on keeping lab notebooks and writing lab reports, which they learned in the pre-requisite core writing course ME4031W. Instructors in the lab courses make it clear that excellent communication in reports is essential for success.

Assisting the pillars is the non-discipline specific writing instruction provided by the introductory courses taught outside the department, which includes First Year Writing and physics.

Mechanical Engineering Style Guides

A set of discipline-specific style guides has been develop to assist students and instructors in assignments that involve writing. The guides include writing problem sets, writing lab reports and writing design reports. The guides are non-course specific so that they can be used in any course that requires the genre covered by a guide. While much of the material in the guides can be found in numerous technical writing books, the value of creating our own guides is that they can focus on what is most important to mechanical engineers and they send the message that writing is important in mechanical engineering at the University of Minnesota.

Augmenting the guides are a set of evaluation rubrics that instructors can use to assist them in evaluating student writing and that students can use to help them understand expectations for their writing.

Training Course Instructors

The writing program rests on the assumption that while the expectation for high quality writing in a course is set by the faculty member in charge, the majority of the assessment of student work is done by Teaching Assistants (TAs) who for the most part are evaluating student work for technical content. Therefore, training in the goals of the department writing program and in how to assess problem sets, lab reports and design reports for communication, and an introduction to the department style guides is provided to all department TAs. This training occurs during the required TA orientation session that occurs at the start of every semester.
Department Writing Web Site

A department Writing Standards web site has been established. From the Mechanical Engineering home page (www.me.umn.edu) > Undergraduate Education > Writing Standards. The web site contains a statement on writing, the department writing program (this document), style guides and instructor resources. Instructor resources include grading rubrics, sample statements about writing to include on syllabi and suggestions for assessing student writing.

University Writing Intensive Requirement

The University of Minnesota requires all students to complete four writing intensive courses (those with a W designator). Two must be taken at the upper division level, of which one must be in the major. The department writing plan requires no modification of the WI requirement for mechanical engineering students who satisfy the requirement by taking the two introductory physics courses and ME 4031W and ME 4054W, both of which are upper division and within the major. There are no plans to change the W status of these two courses.

Transfer Students

The department graduates a large number of transfer students who typically enter with upper division status. Typically, the admissions department determines whether they have satisfied first year writing and two writing intensive experience equivalent to the introductory physics courses. Once admitted, transfer students will experience almost the same writing instruction and experience as non-transfer students in the major. The only exception is that many transfer students place out of ME 2011, the only lower division course offered by the department. The writing outcomes expected of transfer students are the same as for non-transfer students.

Connecting Writing to the ABET Accreditation Process

Every six years the mechanical engineering undergraduate program goes through a comprehensive ABET accreditation process, which involves self-study, a site visit and implementing a process of continuous assessment and improvement. ABET accreditation requires that the program have a set of published educational objectives and outcomes for the program, and a documented assessment processes that demonstrates that the objectives meet the needs of stakeholders and that the objectives are being attained. Several of the ABET-required program outcomes are directly or indirectly connected to the department writing program, including objective (g), an ability to communicate effectively. For example, in a previous self-student, faculty in the department felt that objective (a), an ability to apply knowledge of mathematics, science and engineering, was not adequately achieved in the capstone design course ME 4054W as evidenced by sampling design reports. This led to an increased emphasis on analysis-driven design projects and an explicit requirement to document the design in the report. Writing ability 1 (see Section 2), apply knowledge of physics, mathematics, and engineering in their writing, comes directly from ABET objective (a), and is assessed in the same way, by sampling design reports from ME 4054W. Other parts of the department’s documented process of self-assessment involve sampling exams, reports, design notebooks and other student work. Evaluating the ability of students in the major to communicate is a natural part of the ABET evaluation process.

Continuing Responsibility for the Writing Program

Responsibility for continuing implementation of the writing program rests with the department Undergraduate Curriculum Committee, a standing committee whose membership includes faculty, the head of Undergraduate Students Services and one undergraduate student.
SECTION #4 ASSESSMENT OF WRITING PROGRAM

Course-Based Assessment in Core Writing Courses

The core writing courses are ME 2011, ME 4031W and ME 4054W. Assessment is used by course instructors for course improvements to rate student writing.

Formative Assessment: Instructors review student work on assignments and use student performance to determine if writing instruction needs modification. In WI courses, instructors provide feedback for revision assignments. Instructors may choose to show exemplary examples of technical writing so that students begin to understand the quality bar. At the end of the course, one or more of the questions related to writing from the optional question bank developed for the Student Rating of Teaching (SRT) are included on the SRT form for the course and used for course improvement.

Summative Assessment: Instructors use rubrics to grade student work on writing assignments. In some cases, an explicit portion of the grade depends on the quality of the writing. Grade-norming sessions are held with instructors in multi-section courses in order to ensure that rubrics are being used similarly across sections and instructors.

Course-Based Assessment in Problem-Set and Senior Laboratory Courses

Formative Assessment: During grading for technical content, TAs examine student work on problem sets and lab reports for writing quality. If the writing quality is not meeting expected standards, TAs use recitation sections or the instructor uses whole class time to provide additional instruction to students in technical communication standards for problem sets or lab reports. Exemplary examples of technical writing may be shown so that students begin to understand the quality bar.

Summative Assessment: In some cases, graders, using a rubric, use a portion of an assignment grade to evaluate the quality of the writing.

Program-Based Assessment

The purpose of assessing the department writing program as a whole is to understand whether it is achieving the goal of students attaining the writing abilities listed in Section 2. Several forms of assessment are used, some of which are tied to the regular evaluation and continuous improvement done as part of the ABET assessment process. The data from program assessment is interpreted by the Mechanical Engineering Undergraduate Curriculum Committee (MEUCC) who in turn can make recommendations to the department faculty for writing program changes. The MEUCC writes a brief evaluation of the writing program for the ABET self-study report. The archived ABET reports allow evaluation of the program over a longer time window.

Writing Samples: A random set of writing samples are drawn from student work and evaluated by a group of three or four faculty members, possibly with the assistance of members of the Writing Enriched Curriculum (WEC) team. The evaluation uses a rubric with metrics based on the writing abilities listed in Section 2. Writing samples may include the following:

- From ME 2011: Portfolio
- From ME 4031: One lab report
- From ME 4054: Design report
- From one engineering science course: One problem set
- From one senior laboratory course: One lab report.
The sampling takes place on the biennial cycle that matches assessment of course material for ABET purposes.

Program Resources: At periodic intervals, the MEUCC, possibly with the assistance of members of the WEC team, reviews the department writing program resources such as the style guides, grading rubrics and instructor resources, and recommends changes.

Stake-Holder Feedback: A small sample of students in the major, department faculty and practicing engineers are interviewed through survey or in-person for comments on student writing and the department writing program. Practicing engineers are drawn from the Mechanical Engineering Advisory council. Interviewing is biennial and tied to ABET self-assessment.

Curriculum Survey: Since 1999, well before the writing program started, an opinion survey has been administered to students in ME 2011, when they are near the start of their program, and students in ME 4054, when they are near the end of their program. The survey includes a question about the importance of writing to the engineering profession. The survey continues to be administered. The data allows a longitudinal assessment to determine if the writing program has impacted student’s opinion of writing.

SECTION #5 SUPPORT REQUIRED FOR THE PROGRAM

Support Within the Department

MEUCC: The MEUCC is charged with overall responsibility for maintaining the writing program.

Faculty Teaching Core Instruction Courses: Faculty in charge of ME 2011, ME 4031W and ME 4054W must be particularly sensitive to the responsibility for providing effective and appropriate writing instruction in the courses. Faculty teaching the two WI courses are responsible for ensuring their course meets the WI criteria.

Faculty Teaching Core Engineering Science and Senior Laboratory Courses: Faculty are encouraged to include significant writing instruction in their courses, to make use of the writing style guides, to include a statement about the importance of writing in the syllabus and to assign a small portion of the grade to quality of writing, even for problem set based courses.

Teaching Assistants: TAs are expected to attend the required training on writing instruction that occurs during TA orientation. TAs are expected to encourage students to maintain high standards for technical writing and to provide assistance in writing to students if requested. TAs in the three core writing courses will be involved in the formal assessment of writing.

Support From Outside the Department

TA Support: Additional TA support for the two WI courses, ME 4031W and ME 4054W, beyond the normal TA allotment for courses. Additional TA support is required to fully meet the requirements of writing intensive.

Assessment Assistant: Undergraduate worker support is required to assist with data collection and analysis of the assessment plan. Expected work load is 75 hours per academic year.
From the WEC Program
1. Assistance with reviewing student writing samples as described in Section 4
2. Review writing resources, including style guides and grading rubrics
3. Course and assignment based instruction consultation with individual faculty on an as-needed basis
4. Custom 2-hour “Teaching with Writing in Mechanical Engineering” workshop for department TAs, delivered twice each year in conjunction with TA orientation

SECTION #6 PROCESS USED TO CREATE THE PLAN

See supporting documentation.
SECTION #7 CONNECTION TO STUDENT LEARNING OUTCOMES

The University of Minnesota Student Learning Outcomes are that at the time of receiving a bachelor’s degree, students:

1. Can identify, define, and solve problems
2. Can locate and critically evaluate information
3. Have mastered a body of knowledge and a mode of inquiry
4. Understand diverse philosophies and cultures within and across societies
5. Can communicate effectively
6. Understand the role of creativity, innovation, discovery, and expression across disciplines
7. Have acquired skills for effective citizenship and life-long learning

The desired abilities in the Mechanical Engineering writing plan align with the SLOs as shown in the table.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Can locate and critically evaluate information</th>
<th>Can identify, define, and solve problems</th>
<th>Have mastered a body of knowledge and a mode of inquiry</th>
<th>Understand diverse philosophies and cultures within and across societies</th>
<th>Can communicate effectively</th>
<th>Understand the role of creativity, innovation, discovery, and expression</th>
<th>Have acquired skills for effective citizenship and life-long learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply knowledge of physics, mathematics, and engineering in their writing</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Record and analyze activity related to laboratories and design projects</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Visually represent designs and explain salient features of a part or concept</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>x</td>
<td>X</td>
</tr>
<tr>
<td>Synthesize and summarize key points</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Strategize and demonstrate engineering project metrics such as productivity, costs and time to completion</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Analyze the audience and create a document that meets the needs of the audience</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Represent themselves professionally</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Explain, discuss, and demonstrate physical apparatus</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Integrate visual, textual and oral explanations</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Communicate among a distributed design team using web-based collaboration tools</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Create team-written documents</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Create reports in the style of academic journal articles</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Create reports in the style of professional engineering reports</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Write according to faculty approved style guidelines</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>