1. ME 4231, Motion Control Lab

2. 4 credits, 5 contact hours.

3. Instructors: R. Rajamani, Z. Sun

4. Textbook: Not applicable

5. Specific course information:
 a. Catalog description: Microprocessor programming, digital filters, frequency response testing, modeling of electromechanical systems, closed loop velocity and position control, programmable logic controllers, factory automation, open loop position control of a vibratory system using input shaping, closed loop position control using pole placement.
 b. Prerequisites: CSCI 1113, ME 4031W, ME 3281.
 c. Elective for ME students.

6. Course outcomes (related ABET student outcomes indicated in square brackets):
 a. An understanding of the theory of mechatronics, sampling, discrete-time systems and digital closed-loop PID control. [1]
 b. A competency in using software tools to simulate open and closed-loop servomotor systems. [2,7]
 c. An ability to program real-time, closed-loop controllers using a high level programming language. [2]
 d. An ability to utilize data acquisition systems. [6]
 e. An ability to implement software and hardware controllers for real-time control of servo systems. [2,6]
 f. An ability to exploit programmable logic controllers for real-world systems. [2,6]
 g. An ability to document laboratory experiments and results through written reports and oral exams. [3]

7. Course topics:
 a. Mechatronics
 b. C and Matlab programming
 c. Sampling theory and discrete-time systems
 d. Digital filtering
 e. Modeling DC servomotors and system identification
 f. Sensors and actuators
 g. Closed-loop and PID controls
 h. Programmable logic controllers
 i. Labs
 i. C programming methods
 ii. Sampling
 iii. Digital filtering
 iv. Open-loop frequency and transient response of a servomotor
v. Closed-loop position and velocity control
vi. PID control
vii. Use of Simulink and Matlab
viii. Programmable Logic Controllers