1. ME 3332, Fluid Mechanics

2. 3 credits, 4 contact hours

3. Instructors: M. Anderson, C. Dutcher, C. Hogan, J. Hong, L. Shen, V. Srinivasan, P. Strykowski, S. Yang

5. Specific course information:
 a. Catalog description: Mass, momentum and energy conservation principles. Fluid statics, Bernoulli equation, integral and differential control volume analysis, dimensional analysis, internal and external inviscid and viscous flow, boundary layers.
 b. Prerequisites: MATH 2243 or 2373, ME 3331.
 c. Required course.

6. Course outcomes (related ABET student outcomes indicated in square brackets):
 a. An ability to describe the basic principals of fluid mechanics. [1]
 b. An ability to perform mass, energy, and linear momentum balances for open and closed control volumes (both macroscopic and differential). [1]
 c. An ability to apply laws and relations of fluid mechanics to analyze systems involving viscous and inviscid internal and external flows. [1]
 d. A knowledge of basic fluidic devices including one or more of the following: pipes, manometers, pumps, flow devices (e.g. Venturi), pitot tubes, etc. [1]

7. Course topics:
 a. Fluid properties.
 b. Fluid statics.
 c. Ideal fluids, Bernoulli equation.
 d. Reynolds transport theorem.
 e. Control volume analysis.
 f. Introduction to differential analysis.
 g. Dimensional analysis.
 h. Internal & external viscous flows.