Linear Quadratic Optimal Control Topics

- Finite time LQR problem for time varying systems
 - Open loop solution via Lagrange multiplier
 - Closed loop solution
 - Dynamic programming (DP) principle
 - Cost-to-go function computed from DP
- Infinite time LQ problem for LTI systems
 - Convergence of $P(t \to -\infty, t_f)$
 - Closed loop stability
 - P_∞ as solution of ARE via Hamiltonian matrix
 - Selection of Q, R and S
- Some extensions
 - Discrete time LQ
 - Pole-placement within a pre-defined region
 - Frequency shaping
• Pole-placement approach allows ones to choose where to place the poles
 • SI feedback gain unique
 • MI feedback gain non-unique (e.g. need Hautus-Keyman Lemma or eigenvector placement)

• Main issue: where should we place the poles???

• Should consider trade-off between performance, robustness and control effort.

• LQ technique tries to do some trade-off without specifying desired poles locations
m– input, $u \in \mathbb{R}^m$, n–state system with $x \in \mathbb{R}^n$:

$$\dot{x} = A(t)x + B(t)u; \quad x(0) = x_0. \quad (1)$$

Find open loop control $u(\tau), \tau \in [t_0, t_f]$ such that the following objective function is minimized:

$$J(u, x_0, t_0) = \frac{1}{2}x^T(t_f)Sx(t_f) +$$

$$\frac{1}{2} \int_{t_0}^{t_f} \left[x^T(t)Q(t)x(t) + u^T(t)R(t)u(t) \right] dt \quad (2)$$

- $Q(t) = Q^T(t)$ and S are symmetric positive semi-definite $n \times n$ matrices
- $R(t) = R^T(t)$ is a symmetric positive definite $m \times m$ matrix.

Notice that $x_0, t_0,$ and t_f are fixed and given data.
The control goal generally is to keep $x(t)$ close to 0^1, especially, at the final time t_f, using little control effort u. To wit, notice in (2)

- $x^T(t)Q(t)x(t)$ penalizes the transient state deviation,
- $x(t_f)^T S x(t_f)$ penalizes the finite state
- $u^T(t)R(t)u(t)$ penalizes control effort.

Output regulation:
If $y = C(t)x$ is the output, we can define:

$$Q(t) = C^T(t)W(t)C(t)$$

where $W(t)$ is a symmetric, positive definite output weighting matrix.

1 LQ can be modified for the trajectory tracking case.
Plant:
\[\dot{x} = f(x, u, t); \quad x(t_0) = x_0 \text{ given.} \]

Time interval: \(t \in [t_0, t_f] \).

Cost function to be minimized:
\[J(u(\cdot), x_0) = \phi(x(t_f)) + \int_{t_0}^{t_f} L(x(t), u(t), t)dt \]

First term = final cost and the second term = running cost.

Problem: Find \(u(t), t \in [t_0, t_f] \) such that \(J(x_0, u(\cdot)) \) is minimized, subject \(x(t) \) satisfying the plant equation \(x(t_0) = x_0 \) given.
IDEA: convert constrained optimal control into unconstrained optimal control using Lagrange multiplier $\lambda(t) \in \mathbb{R}^n$:

$$\bar{J}(u, \lambda(\cdot), x_0) = J(u(\cdot), x_0) + \int_{t_0}^{t_f} \lambda^T(t)[f(x, u, t) - \dot{x}]dt.$$

Note that $\frac{d}{dt}(\lambda^T(t)\dot{x}(t)) = \dot{\lambda}^T(t)x(t) + \lambda^T(t)\dot{x}$. So

$$\int_{t_0}^{t_f} \lambda^T \dot{x} dt = \lambda^T(t_f)\dot{x}(t_f) - \lambda^T(t_0)\dot{x}(t_0) - \int_{t_0}^{t_f} \dot{\lambda}^T x dt.$$

Let us define the so called Hamiltonian function

$$H(x, u, t) := L(x, u, t) + \lambda^T(t)f(x, u, t).$$
Necessary condition for optimality

Variation of the modified cost $\delta \bar{J}$ with respect to all feasible variations $\delta x(t)$ and $\delta u(t)$ and $\delta \lambda(t)$ should vanish.

Using integration by parts: $\lambda \dot{x} = \lambda x - \dot{\lambda} x$,

\[
\bar{J} = \phi(x(t_f)) - \lambda^T(t_f)x(t_f) + \lambda^T(t_0)x(t_0) \\
+ \int_{t_0}^{t_f} H(x(t), u(t), t) + \dot{\lambda}(t)x(t)] \, dt
\]

$\delta \bar{J} = [\phi_x - \lambda^T] \delta x(t_f) + \lambda^T(t_0) \delta x(t_0) \\
+ \int_{t_0}^{t_f} [H_x + \dot{\lambda}^T] \delta x + H_u \delta u dt \\
+ \int_{t_0}^{t_f} \delta \lambda^T [f(x(t), u(t), t) - \dot{x}] dt$

Since $x(t_0) = x_0$ is fixed, $\delta x(t_0) = 0$. Otherwise, other variations $\delta x(t)$, $\delta u(t)$ or $\delta \lambda(t)$ are all feasible.
Necessary condition for optimality

Variation of the modified cost $\delta \bar{J}$ with respect to all feasible variations $\delta x(t)$ and $\delta u(t)$ and $\delta \lambda(t)$ should vanish.

Using integration by parts: $\lambda \dot{x} = \lambda x - \dot{\lambda} x$,

$$\bar{J} = \phi(x(t_f)) - \lambda^T(t_f)x(t_f) + \lambda^T(t_0)x(t_0)$$
$$+ \int_{t_0}^{t_f} H(x(t), u(t), t) + \dot{\lambda}(t)x(t)]\, dt$$

$$\delta \bar{J} = [\phi_x - \lambda^T] \delta x(t_f) + \lambda^T(t_0) \delta x(t_0)$$
$$+ \int_{t_0}^{t_f} [H_x + \dot{\lambda}^T] \delta x + H_u \delta u dt$$
$$+ \int_{t_0}^{t_f} \delta \lambda^T [f(x(t), u(t), t) - \dot{x}] dt$$

Since $x(t_0) = x_0$ is fixed, $\delta x(t_0) = 0$. Otherwise, other variations $\delta x(t), \delta u(t)$ or $\delta \lambda(t)$ are all feasible.
Necessary condition for optimality

Variation of the modified cost \(\delta \bar{J} \) with respect to all feasible variations \(\delta x(t) \) and \(\delta u(t) \) and \(\delta \lambda(t) \) should vanish.

Using integration by parts: \(\lambda \dot{x} = \lambda x - \dot{\lambda} x \),

\[
\bar{J} = \phi(x(t_f)) - \lambda^T(t_f)x(t_f) + \lambda^T(t_0)x(t_0) \\
+ \int_{t_0}^{t_f} H(x(t), u(t), t) + \dot{\lambda}(t)x(t)] \, dt
\]

\[
\delta \bar{J} = [\phi_x - \lambda^T]\delta x(t_f) + \lambda^T(t_0)\delta x(t_0) \\
+ \int_{t_0}^{t_f} [H_x + \dot{\lambda}^T]\delta x + H_u \delta u dt \\
+ \int_{t_0}^{t_f} \delta \lambda^T[f(x(t), u(t), t) - \dot{x}]dt
\]

Since \(x(t_0) = x_0 \) is fixed, \(\delta x(t_0) = 0 \). Otherwise, other variations \(\delta x(t), \delta u(t) \) or \(\delta \lambda(t) \) are all feasible.
Hence,

\[\dot{\lambda} = -H_x = -\frac{\partial L}{\partial x} - \lambda^T \frac{\partial f}{\partial x} \quad (3) \]
\[\dot{x} = f(x, u, t) \quad (4) \]
\[H_u = -\frac{\partial L}{\partial u} - \lambda^T \frac{\partial f}{\partial u} = 0 \quad (5) \]
\[\lambda^T(t_f) = \frac{\partial \phi}{\partial x}(x(t_f)) \quad (6) \]
\[x(t_0) = x_0. \quad (7) \]

This is a set of 2n differential equations (in \(x \) and \(\lambda \)) with split boundary conditions at \(t_0 \) and \(t_f \): \(x(t_0) = x_0 \) and \(\lambda^T(t_f) = \phi_x(x(t_f)) \).
Open loop formulation:

\[
L(x, u, t) = \frac{1}{2} x^T(t)Q(t)x(t) + \frac{1}{2} u^T(t)R(t)u(t)
\]

\[
\phi(x(t_f)) = \frac{1}{2} x^T(t_f)Sx(t_f)
\]

\[
f(x, u, t) = A(t)x + B(t)u
\]

Using the above in Eqs.(3)-(7), the optimal control is (see (5)):

\[
u^o(t) = -R^{-1}B^T(t)\lambda(t)
\]

where \(\lambda(t)\) and \(x(t)\) satisfy the Hamilton-Jacobi eqn (3)-(4):

\[
\begin{pmatrix}
\dot{x} \\
\dot{\lambda}
\end{pmatrix} = \begin{pmatrix}
A(t) & -B(t)R^{-1}B^T(t) \\
-Q(t) & -A^T(t)
\end{pmatrix} \begin{pmatrix}
x \\
\lambda
\end{pmatrix} \tag{8}
\]

Hamiltonian Matrix - \(H(t)\)

with boundary conditions given by (see (6)-(7)):

\[
x(t_0) = x_0; \quad \lambda(t_f) = Sx(t_f).
\]
Boundary conditions specified at initial time t_0 and final time t_f (two point boundary value problem). In general, these are difficult to solve requires iterative methods such as *shooting method*.

Optimal control is **open loop**. It is computed by first computing $\lambda(t)$ for all $t \in [t_0, t_f]$ and then applying $u^o(t) = -R^{-1}B^T(t)\lambda(t)$.

Open loop control is not robust to disturbances or uncertainties.
Consider $X_1(t) \in \mathbb{R}^{n \times n}$ and $X_2(t) \in \mathbb{R}^{n \times n}$ satisfying the Hamilton-Jacobi equation:

$$
\begin{pmatrix}
\dot{X}_1 \\
\dot{X}_2
\end{pmatrix} =
\begin{pmatrix}
A(t) & -B(t)R^{-1}B^T(t) \\
-Q(T) & -A^T(t)
\end{pmatrix}
\begin{pmatrix}
X_1 \\
X_2
\end{pmatrix}
$$

with $X_1(t_f)$ non-singular (e.g. $X_1(t_f) = I_{n \times n}$) & $X_2(t_f) = SX_1(t_f)$.

Requires solving the $2n \times n$ differential equations backward in time.
Claim: Assuming that $X_1(t)$ is invertible for all $t \in [t_0, t_f]$. Then, we can express $x(t)$ and $\lambda(t)$ satisfying the Hamilton-Jacobi equation by:

$$
\begin{pmatrix}
 x(t) \\
 \lambda(t)
\end{pmatrix} =
\begin{pmatrix}
 X_1(t) \\
 X_2(t)
\end{pmatrix} v
$$

for some constant $v \in \mathbb{R}^n$. Moreover,

$$
\lambda(t) = [X_2(t)X_1^{-1}(t)]x(t)
$$

Proof: By direct substitution. With $v = X_1^{-1}(t_0)x_0$, that $x(t)$ and $\lambda(t)$ satisfy the HJB equation and boundary conditions.
This implies that optimal control can be expressed as closed loop state-feedback:

\[u^o(t) = -R^{-1}B^T(t)\lambda(t) = -R^{-1}B^T(t)P(t)x(t) \]

where \(P(t) := X_2(t)X_1^{-1}(t) \in \mathbb{R}^{n \times n} \).

Note: \(P(t) \) still needs to be solved first (backwards in time).
This implies that optimal control can be expressed as **closed loop state-feedback**:

\[
u^o(t) = -R^{-1}B^T(t)\lambda(t) = -R^{-1}B^T(t)P(t)x(t)
\]

where \(P(t) := X_2(t)X_1^{-1}(t) \in \mathbb{R}^{n \times n}\).

Note: \(P(t)\) still needs to be solved first (backwards in time).
Differentiating $P(t) := X_2(t)X_1^{-1}(t)$ and using Hamilton-Jacobi equation (for $X_1(t)$ and $X_2(t)$), we find that $P(t)$ satisfies the continuous time Riccati differential equation (CTRDE):

$$\dot{P}(t) = -A^T(t)P(t) - P(t)A(t) + P(t)B(t)R^{-1}(t)B^T(t)P(t) - Q(t);$$

(9)

with boundary condition $P(t_f) = S$.

- $P(t)$ is symmetric and positive semi-definite.
- Symmetric because S and all terms in (9) are symmetric.
- To show that $P(t)$ is positive semi-definite, we will relate $P(t)$ to minimum cost:

$$J(u^o, x_0, t_0) = \frac{1}{2} x_0^T P(t_0) x_0.$$

where $u^o(t)$ is the optimal control.
Differentiating \(P(t) := X_2(t)X_1^{-1}(t) \) and using Hamilton-Jacobi equation (for \(X_1(t) \) and \(X_2(t) \)), we find that \(P(t) \) satisfies the continuous time Riccati differential equation (CTRDE):

\[
\dot{P}(t) = -A^T(t)P(t) - P(t)A(t) + P(t)B(t)R^{-1}(t)B^T(t)P(t) - Q(t);
\]

with boundary condition \(P(t_f) = S \).

- \(P(t) \) is symmetric and positive semi-definite.
- Symmetric because \(S \) and all terms in (9) are symmetric.
- To show that \(P(t) \) is positive semi-definite, we will relate \(P(t) \) to minimum cost:

\[
J(u^o, x_0, t_0) = \frac{1}{2} x_0^T P(t_0) x_0.
\]

where \(u^o(t) \) is the optimal control.
Differentiating \(P(t) := X_2(t)X_1^{-1}(t) \) and using Hamilton-Jacobi equation (for \(X_1(t) \) and \(X_2(t) \)), we find that \(P(t) \) satisfies the continuous time Riccati differential equation (CTRDE):

\[
\dot{P}(t) = -A^T(t)P(t) - P(t)A(t) + P(t)B(t)R^{-1}(t)B^T(t)P(t) - Q(t); \quad (9)
\]

with boundary condition \(P(t_f) = S \).

- \(P(t) \) is symmetric and positive semi-definite.
- Symmetric because \(S \) and all terms in (9) are symmetric.
- To show that \(P(t) \) is positive semi-definite, we will relate \(P(t) \) to minimum cost:

\[
J(u^o, x_0, t_0) = \frac{1}{2} x_0^T P(t_0) x_0.
\]

where \(u^o(t) \) is the optimal control.
ODE for $P(t) = X_2(t)X_1^{-1}(t)$

Differentiating $P(t) := X_2(t)X_1^{-1}(t)$ and using Hamilton-Jacobi equation (for $X_1(t)$ and $X_2(t)$), we find that $P(t)$ satisfies the continuous time Riccati differential equation (CTRDE):

$$\dot{P}(t) = -A^T(t)P(t) - P(t)A(t) + P(t)B(t)R^{-1}(t)B^T(t)P(t) - Q(t);$$

with boundary condition $P(t_f) = S$.

- $P(t)$ is symmetric and positive semi-definite.
- Symmetric because S and all terms in (9) are symmetric.
- To show that $P(t)$ is positive semi-definite, we will relate $P(t)$ to minimum cost:

$$J(u^o, x_0, t_0) = \frac{1}{2}x_0^TP(t_0)x_0.$$

where $u^o(t)$ is the optimal control.
Form of $J(u^o, x_0, t_0)$

- From the optimal control, and closed loop system being linear

$$u^o(t) = -R^{-1}(t)B^T(t)P(t)x(t)$$

$$x(t) = \Phi(t, t_0)x_0$$

- The form of the minimum cost function Eq.(2) must be:

$$J^o(x_0, t_0) = J(u^o, x_0, t_0) = \frac{1}{2}x_0^T\bar{P}(t_0)x_0.$$

for some positive semi-definite matrix $\bar{P}(t_0)$.

- To show that $\bar{P}(t_0) = P(t_0)$, we need to understand the Dynamic Programming Principle.
Consider a shortest path problem in which we need to traverse a network from state i_0 and to reach state 5 with minimal cost.

- Cost to traverse an arc from $i \rightarrow j$ is $a_{ij} > 0$.
- Cost to stay is $a_{ii} = 0$ for all i.
- Since there are only 4 non-destination states, state 5 can be reached in at most $N = 4$ steps.
Total cost is sum of the cost incurred, i.e. if the (non-optimal) control policy π is $2 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$, then

$$J(\pi) = a_{22} + a_{23} + a_{34} + a_{45}$$

Goal is to find the policy that minimizes J.

As an optimization problem the space of 4 step policy has a cardinality of $5^4 = 625$
DP algorithm:

We start from the end stage \((N = 4)\), i.e. you need to reach the state 5 in one step. Suppose that you are in state \(i\), the cost to reach state 5 is

\[
\min\{a_{i5}\} = a_{i5}
\]
The optimal and only choice for next state, if currently at state i, is $u^*(i, N) = 5$. Optimal cost-to-go is $J^*(i, N) = a_{i5}$.

<table>
<thead>
<tr>
<th>Node</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>u^*</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>$J^*(i, N)$</td>
<td>2</td>
<td>7</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>
Consider the $N-1$st stage, and you are in state i. We can have the policy $\pi : i \rightarrow j \rightarrow 5$. Since the minimum cost to reach state 5 from state j is $J^*(j, N)$, the optimal control policy is:

$$\min_j (a_{ij} + J^*(j, N))$$

$$= \min \{a_{i1} + a_{15}, a_{i2} + a_{25}, \ldots, a_{i5} + a_{55}\}$$

For $i = 4$ (for instance),

<table>
<thead>
<tr>
<th>j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_{4j}</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$a_{4j} + J^*(j, N)$</td>
<td>4</td>
<td>11</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

Thus, the j that optimizes this is: $j = 4$ (stay put) so that $u^*(4, N-1) = 4$ and $J^*(4, N-1) = 3$.
Doing this for each i, we have at stage $N - 1$,

- Optimal policy:

$$u^*(i, N - 1) = \arg \min_j (a_{ij} + J^*(j, N))$$

- Optimal cost-to-go:

$$J^*(i, N - 1) = \min_j (a_{ij} + J^*(j, N))$$

<table>
<thead>
<tr>
<th>Node</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u^*(i, N - 1)$</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>$J^*(i, N - 1)$</td>
<td>2</td>
<td>5.5</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
DP example - Cont’d

If we are at the $N-2$nd stage, and you are in state i,

Optimal policy:

$$u^*(i, N-2) = \arg\min_j (a_{ij} + J^*(j, N-1))$$

Optimal cost-to-go:

$$J^*(i, N-2) = \min_j (a_{ij} + J^*(j, N-1))$$

<table>
<thead>
<tr>
<th>Node</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u^*(i, N-2)$</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>$J^*(i, N-2)$</td>
<td>2</td>
<td>4.5</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Notice that from state 2, the 3 step policy

$$2 \rightarrow 3 \rightarrow 4 \rightarrow 5$$

has a lower cost of 4.5 than the 2 step policy $2 \rightarrow 3 \rightarrow 5$ with a cost of 5.5.
Repeating the propagation procedure for the optimal policy and optimal cost-to-above until $N = 1$. Then the optimal policy is $u^*(i, 1)$ and the minimum cost is $J^*(i, 1)$.

The optimal sequence starting at i_0 is:

$$i_0 \rightarrow u^*(i_0, 1) \rightarrow u^*(u^*(i_0, 1), 2) \rightarrow u^*(u^*(u^*(i_0, 1), 2), 3) \rightarrow 5$$
At each stage k, the optimal policy $u^*(i, k)$ is a state feedback policy. i.e. it determines what to do depending on the state that you are in.

Policy and optimal cost-to-go are computed backwards in time (stage).

At each stage, the optimization is done on the space of intermediate states, which has a cardinality of 5.

The large optimization problem with cardinality of 5^4 has been reduced to 4 simpler optimization problem with cardinality of 5 each.
Dynamic Programming Principle

“The tail end of the optimal sequence is optimal for the tail problem”.

- If the optimal 4 step sequence π_4 starting at i_0 is:

$$i_0 \rightarrow u^*(i_0, 1) \rightarrow u^*(u^*(i_0, 1), 2) \rightarrow u^*(u^*(u^*(i_0, 1), 2), 3) \rightarrow 5$$

- then the sub-sequence π_2

$$u^*(i_0, 1) \rightarrow u^*(u^*(i_0, 1), 2) \rightarrow u^*(u^*(u^*(i_0, 1), 2), 3) \rightarrow 5$$

is the optimal 3 step sequence starting at $u^*(i_0, 1)$.

- This is so because if $\bar{\pi}_3$ is another 3 step sequence starting at $u^*(i_0, 1)$ with a strictly lower cost than π_3, then the 4-step sequence $i_0 \rightarrow \bar{\pi}_3$ will also have a lower cost than $\pi_4 = i_0 \rightarrow \pi_3$ which is assumed to be optimal.
Another DP example

- Find optimal sequence of operations A, B, C, D
 (A must precede B and C must precede D)

![Diagram of DP example]

Bold numbers are the values of the cost-to-go function for the node (and stage).
Dynamic Programming (DP) Principle
Continuous time

System:
\[\dot{x} = f(x(t), u(t), t), \quad x(t_0) = x_0, \]

Cost index:
\[
J(u(\cdot), t_0) = \int_{t_0}^{t_f} L(x(t), u(t), t) dt + \phi(x(t_f)). \tag{10}
\]
Suppose that \(u^0(t) \), \(t \in [t_0, t_f] \) minimizes (10) subject to \(x(t_0) = x_0 \) and \(x^0(t) \) is the associated state trajectory.

Let the minimum cost achieved using \(u^0(t) \) be:

\[
J^o(x_0, t_0) = \arg\min_{u(\tau), \tau \in [t_0, t_f]} J(u(\cdot), t_0)
\]

Then, for any \(\Delta t \) s.t. \(t_0 \leq t + \Delta t \leq t_f \), the restriction of the control \(u^0(\tau) \) to \(\tau \in [t + \Delta t, t_f] \) minimizes

\[
J(u(\cdot), t_0 + \Delta t) = \int_{t_0 + \Delta t}^{t_f} L(x(t), u(t), t) dt + \phi(x(t_f)).
\]

subject to initial condition \(x(t_0 + \Delta t) = x^0(t_0 + \Delta t) \).

i.e. \(u^0(\tau) \) is optimal over the sub-interval.
Solve the optimal control problem for sub-interval \([t_1, t_f]\) with \textbf{arbitrary} initial states, \(x(t_1) = x_1\).

Let the control that is optimal be \(u(t) = u^o(t, t_1, x_1)\) and let \(J^o(x_1, t_1)\) be the optimal cost given initial state \(x(t_1) = x_1\).

Now consider \(t_0 < t_1\). The optimal control \(u^o(t, t_0, x_0)\) for the interval \([t_0, t_f]\) with initial states, \(x(t_0) = x_0\) is given as follows.

For \(t_0 \leq t \leq t_1\), \(u^o(t, t_0, x_0)\) is the \(u(t)\) that minimizes:

\[
\int_{t_0}^{t_1} L(x(t), u(t), t) dt + J^o(x(t_1), t_1)
\]

subject to \(\dot{x}(t) = f(x(t), u(t), t)\). Notice that \(x(t_1)\) is unknown a-priori since it depends on \(u(t)\).
For $t_1 \leq t \leq t_f$, the optimal control

$$u^o(t, t_0, x_0) = u^o(t, t_1, x(t_1))$$

where $x(t_1)$ is the state achieved at $t = t_1$ from the initial state x_0 using optimal control $u^o(t, t_0, x_0)$ over the interval $[t_0, t_1]$.

This procedure can be repeated by taking the initially time further and further back.

The optimal cost $J^o(x, t)$ is the cost-to-go function at time t.
Let us apply DP to the LQ case (note: without the $1/2$ for simplicity):

$$L(x, u, t) = \frac{1}{2} x^T Q(t) x + \frac{1}{2} u^T R(t) u$$

$$f(x, u, t) = A(t)x + Bu$$

$$J = \int_{t_0}^{t_f} L(x, u, t) dt + \phi(x(t_f)).$$

At $t = t_f$, the cost-to-go function is simply:

$$J^o(x, t_f) = \frac{1}{2} x^T(t_f) S x(t_f) = \frac{1}{2} x^T(t_f) \bar{P}(t_f) x(t_f)$$

Hence, $\bar{P}(t_f) = S$.

Let $t_1 = t_f$ and consider $t = t_1 - \Delta t$ where Δt is infinitesimally small.

The optimal control at t given the state $x(t)$ is minimize

$$\min_{u(t)} L(x, u, t) \Delta t + J^o(x(t_1), t_1)$$

Now, $x(t_1) = x(t) + f(x(t), u(t), t) \Delta t$. Thus, we minimize w.r.t. $u(t)$,

$$\approx \left[x(t)^T Q(t)x(t) + u^T(t)R(t)u(t) \right] \Delta t + x(t)\bar{P}(t_1)x(t)$$

$$+ \left[x^T(t)A^T(t) + u^T(t)B^T(t) \right] \bar{P}(t_1)x(t) \Delta t$$

$$+ x^T(t)\bar{P}(t_1)[A(t)x(t) + B(t)u(t)] \Delta t$$
Differentiating w.r.t. \(u(t) \), we get the optimal control policy:

\[
\begin{align*}
 u^o^T R(t) + x^T(t) \bar{P}(t_1) B(t) &= 0 \\
 \Rightarrow u^o(t) &= -R^{-1}(t)B^T(t)\bar{P}(t_1)x(t)
\end{align*}
\]

The updated optimal cost-to-go function is:

\[
2 \cdot J^o(x(t), t) \approx \left[x(t)^T Q(t) x(t) + u^o^T(t) R(t) u^o(t) \right] \Delta t \\
+ x(t) \bar{P}(t_1) x(t) \\
+ [x^T(t) A^T(t) + u^o^T(t) B^T(t)] \bar{P}(t_1) x(t) \Delta t \\
+ x^T(t) \bar{P}(t_1) [A(t)x(t) + B(t)u^o(t)] \Delta t
\]
This shows that

\[
2 \cdot J^0(x(t), t) \\
\approx x^T(t)\bar{P}(t_1)x(t) + x^T(t) \left[A^T(t)\bar{P}(t_1) + \bar{P}(t_1)A(t) \\
- \bar{P}(t_1)B(t)R^{-1}(t)B^T(t)\bar{P}(t_1) + Q(t) \right] x(t) \cdot \Delta t \\
= x^T(t)\bar{P}(t)x(t)
\]

where

\[
- \left(\bar{P}(t_1) - \bar{P}(t) \right) \\
= \left[A^T(t)\bar{P}(t_1) + \bar{P}(t_1)A(t) \\
- \bar{P}(t_1)B(t)R^{-1}(t)B^T(t)\bar{P}(t_1) + Q(t) \right] \Delta t
\]

(11)
Thus, we have shown that at t,

$$J^0(x(t), t) = \frac{1}{2}x^T(t)\bar{P}(t)x.$$

Let $t \to t_1, t - \Delta t \to t$ and repeat the process and we get the update recursion in Eq.(11).

As $\Delta t \to 0$, we have Eq.(11) becomes:

$$-\dot{\bar{P}}(t) = A^T(t)\bar{P}(t) + \bar{P}(t)A(t)$$

$$- \bar{P}(t)B(t)R^{-1}(t)B^T(t)\bar{P}(t) + Q(t);$$

which is exactly the Riccati differential equation as before.

Together with $\bar{P}(t_f) = P(t_f) = S$, this shows that $\bar{P}(t) = P(t)$.

P.Y. Li

ME8281-Advanced Control Systems Design
Note: Since

\[x^T(t)P(t)x(t) = \int_t^{t_f} \left[x^T(\tau)Q(\tau)x(\tau) + u^T(\tau)R(\tau)u(\tau) \right] d\tau + x^T(t_f)Sx(t_f) \geq 0 \]

for any \(x(t), P(t) \) is positive semi-definite for any \(t \leq t_f \).
Finite time LQ Summary

- The finite time LQ regulator problem is solved by the control:

\[u^*(t) = -R^{-1}(t)B^T(t)P(t)x(t) \] \hspace{1cm} (12)

where \(P(t) \in \mathbb{R}^{n \times n} \) is the solution to the continuous time Riccati Differential Equation (CTRDE):

\[\dot{P}(t) = -A^T(t)P(t) - P(t)A(t) + P(t)B(t)R^{-1}(t)B^T(t)P(t) - Q(t); \]

with boundary condition \(P(t_f) = S \).

- \(P(t) \) is positive-semi definite
- The minimum cost achieved using the above control:

\[J^*(x_0, t_0) := \min_{u(\cdot)} J(u, x_0) = \frac{1}{2} x_0^T P(t_0)x_0 \]
The control formulation works for time varying systems, e.g. nonlinear systems linearized about a trajectory.

The optimal control law is in the form of a time varying linear state feedback with feedback gain

$$K(t) := R^{-1}(t)B^T(t)P(t)$$

although the control problem is formulated to ask for an open loop control.

The open loop optimal control can be obtained, if so desired, by integrating (1) with the control (12). It is, however, much better to utilize feedback than to use openloop.

$P(t)$ is solved backwards in time from $t_f \rightarrow t_0$ and stored in memory before use.
The matrix function $P(t)$ is associated with the so-called cost-to-go function. If at time t, $t_0 \leq t \leq t_f$ and the state happens to be $x(t)$, then, the control policy (12) for the remaining time period $[t, t_f]$ is also optimal for the problem (2) $J(u, x(t), t, t_f)$ (i.e. with t_0 substituted by t and x_0 substituted by $x(t)$). In this case, the minimum cost is

$$min_u J(u, x(t), t) = \frac{1}{2} x^T(t) P(t) x(t)$$