Natural Convection

CFX Tutorial
Geometry

- Consider a flat plate of zero thickness standing vertically. The surrounding air is at 40°F while the plate itself is at 53°F.
- Due to the temperature difference between the plate and the surrounding air, and also because gravity is present, plate will lose heat by natural convection to the surroundings.
- Our goal in this simulation is to find the amount of heat that is going to be lost, and also to find the heat transfer coefficient as a function of distance from the plate’s leading edge.
Mesh

- As the geometry is very similar to flow over a flat plate of zero thickness, and as people have different preferences regarding their meshing program, we will not discuss the meshing method here.
- We will need seven regions shown in the picture to apply the appropriate boundary conditions.
- After creating geometry and mesh, start a new simulation in CFX-Pre and import the mesh.
Setting Material Properties

All these properties are necessary for natural convection problems. Note the extra “Thermal Expansivity” which is “Thermal Expansion Coefficient”.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>0.0742 [lb ft⁻³]</td>
</tr>
<tr>
<td>Specific Heat Capacit</td>
<td>0.24 [BTU lb⁻¹ F⁻¹]</td>
</tr>
<tr>
<td>Dynamic Viscosity</td>
<td>1.25e-05 [lb ft⁻¹ s⁻¹]</td>
</tr>
<tr>
<td>Thermal Conductivity</td>
<td>0.016 [BTU/(ft² hr (F/ft))]</td>
</tr>
<tr>
<td>Thermal Expansivity</td>
<td>0.0035 [K⁻¹]</td>
</tr>
</tbody>
</table>
Creating the Solution Domain

Change this option to “Buoyant” to see the other options. We will start the solution with an acceleration of gravity of ~1/10 of the actual gravity and will increase it as we get converged solutions along the way.

Reference temperature is the temperature at which the fluid has the density provided in the material properties section.
Select “Thermal Energy” for heat transfer.

We expect the flow to be laminar. If plate was more than 1.5 ft high, instead of 1 ft, then the flow would have been turbulent.

You can either specify the initial conditions using the last tab in the Domain option, or use the following icon on the toolbar to specify them later, since there is only one domain in this problem.
Applying Boundary Conditions
Applying BCs (plate)
Applying BCs (bottom wall)

Details of \textit{bottom} in \textit{fluid}

- **Basic Settings**
 - **Boundary Type**: Wall
 - **Location**: INLET
 - **Coord Frame**: False

- **Thin Surfaces**
 - **Create Thin Surface Partner**: False

Details of \textit{bottom} in \textit{fluid}

- **Wall Influence On Flow**
 - **Option**: No Slip

- **Wall Velocity**: False

- **Heat Transfer**
 - **Option**: Temperature
 - **Fixed Temperature**: 70 [F]
Applying BCs (outlet)
Applying BCs (opening)

<table>
<thead>
<tr>
<th>Basic Settings</th>
<th>Boundary Details</th>
<th>Sources</th>
<th>Plot Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boundary Type</td>
<td>Opening</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>OPENING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coord Frame</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Details of **Opening** in **fluid**

Flow Regime
- Option: Subsonic

Mass And Momentum
- Option: Opening Pres. and Dirn
- Relative Pressure: 0 [Pa]

Flow Direction
- Option: al to Boundary Condition

Heat Transfer
- Option: Opening Temperature
 - Temperature: 40 [F]
Setting up Solver Parameters

Details of Solver Control

- **Basic Settings**
 - **Advection Scheme**
 - **Option**: High Resolution

- **Convergence Control**
 - **Minimum Number of Iterations**
 - **Max. Iterations**: 10000

- **Fluid Timescale Control**
 - **Timescale Control**: Auto Timescale
 - **Length Scale Option**: Conservative
 - **Timescale Factor**: 1.0

- **Convergence Criteria**
 - **Residual Type**: RMS
 - **Residual Target**: 0.000001

- **Elapsed Time Control**
CFX as default calculates heat transfer coefficient by assuming the reference temperature being the temperature of wall-adjacent nodes. We will change this value to the ambient temperature by means of expert parameters.

As the solution units for temperature is Kelvin, we need to convert 40°F to Kelvin. We could change the solution units to Rankin if we wanted to, but again we had to convert 40°F to Rankin.
Solution
Now that we have a converged solution for diminished gravity, we will increase gravity step by step to get to the actual gravity.

The same process can be done in CFX12.0 if we launch CFX in standalone mode. Otherwise, we just need to edit the setup cell in the project and update the solution cell.
After getting a converged solution at each step, we have to repeat the same process to increase the gravity a little more. We may need to repeat this procedure as little as two to three times, or for more unstable cases more than ten times.

Note:
If you think the convergence rate is very fast, you may can increase the rate at which you increase the gravity.

Warning:
If you increase the gravity too much the solution may diverge. If this happens, reload the last converged solution and continue the solution procedure using smaller increment steps.
Solution (contd.)
Post-Processing

- Streamlines
- Temperature contours
- Velocity contours
Notes:
• The non-zero velocity below the plate
• Maximum velocity location shifts to right as y increases
• Above the plate, maximum velocity is at $x=0$.
• Velocity continues to increase even after the plate ends.
Post-Processing (contd.)

This graph shows the variation of heat transfer coefficient as a function of distance from the upstream edge of the plate.

The average heat transfer coefficient is:
0.55 Btu/hr.ft^2.F