Graphical Synthesis: Motion Generation with Ground Pivot Specification

At the end of this video, you should be able to:

• Describe the concept of kinematic inversion
• Graphically synthesize a four bar motion generator with three precision positions by specifying the ground pivots
Digression: Kinematic Inversion

Kinematic Inversion: Considering the motion of a mechanism with different links as ground
3 Precision Position Motion Generation

1. Pick ground pivots \((A_0, B_0)\)

2. Find \(A_0'\) and \(A_0''\) using kinematic inversion
 - \(A_0'\) is the location of \(A_0\), viewed from \(P_2\), drawn in 1st position
3 Precision Position Motion Generation

1. Pick ground pivots \((A_0, B_0)\)
2. Find \(A_0'\) and \(A_0''\) using kinematic inversion
 - \(A_0'\) is the location of \(A_0\), viewed from \(P_2\), drawn in 1st position
3. Find moving pivot \(A_1\) at center of \(A_0, A_0', A_0''\)
3 Precision Position Motion Generation

1. Pick ground pivots \((A_0, B_0)\)
2. Find \(A_0'\) and \(A_0''\) using kinematic inversion
 - \(A_0'\) is the location of \(A_0\), viewed from \(P_2\), drawn in 1\(^{\text{st}}\) position
3. Find moving pivot \(A_1\) at center of \(A_0, A_0', A_0''\)
4. Repeat for B side
3 Precision Position Motion Generation

1. Pick ground pivots \((A_0, B_0)\)
2. Find \(A_0'\) and \(A_0''\) using kinematic inversion
 - \(A_0'\) is the location of \(A_0\), viewed from \(P_2\), drawn in 1\(^{st}\) position
3. Find moving pivot \(A_1\) at center of \(A_0, A_0', A_0''\)
4. Repeat for B side
3 Precision Position Motion Generation

1. Pick ground pivots \((A_0, B_0)\)
2. Find \(A_0'\) and \(A_0''\) using kinematic inversion
 - \(A_0'\) is the location of \(A_0\), viewed from \(P_2\), drawn in 1st position
3. Find moving pivot \(A_1\) at center of \(A_0, A_0', A_0''\)
4. Repeat for \(B\) side
3 Precision Position Motion Generation

1. Pick ground pivots \((A_0, B_0)\)
2. Find \(A_0'\) and \(A_0''\) using kinematic inversion
 - \(A_0'\) is the location of \(A_0\), viewed from \(P_2\), drawn in 1st position
3. Find moving pivot \(A_1\) at center of \(A_0, A_0', A_0''\)
4. Repeat for B side
3 Precision Position Motion Generation

1. Pick ground pivots \((A_0, B_0)\)
2. Find \(A_0'\) and \(A_0''\) using kinematic inversion
 - \(A_0'\) is the location of \(A_0\), viewed from \(P_2\), drawn in 1\(^{st}\) position
3. Find moving pivot \(A_1\) at center of \(A_0, A_0', A_0''\)
4. Repeat for B side
3 Precision Position Motion Generation

1. Pick ground pivots \((A_0, B_0)\)
2. Find \(A_0'\) and \(A_0''\) using
 kinematic inversion
 \(-\ A_0'\) is the location of \(A_0\), viewed from \(P_2\), drawn in 1st position
3. Find moving pivot \(A_1\) at
 center of \(A_0, A_0', A_0''\)
4. Repeat for B side
At the end of this video, you should be able to:

- Graphically synthesize a path generation four bar mechanism through three precision positions with and without specified timing
Path Generation

Source: Erdman, et al., Mechanism Design
Graphical Path Synthesis

Prescribed: P_1, P_2, P_3

Free Choices:
1. A_0 and B_0
2. Input link length
3. Initial input link angle

Procedure:
1. Find A_0' and A_0'' by grounding coupler
Graphical Path Synthesis

Prescribed: P_1, P_2, P_3

Free Choices:
1. A_0 and B_0
2. Input link length
3. Initial input link angle

Procedure:
1. Find A_0' and A_0'' by grounding coupler
Graphical Path Synthesis

Prescribed: P_1, P_2, P_3

Free Choices:
1. A_0 and B_0
2. Input link length
3. Initial input link angle

Procedure:
2. Locate B_0' and B_0''
 - $A_0B_0=A_0'B_0'=A_0''B_0''$
 - $P_2B_0=P_1B_0'$, $P_3B_0=P_1B_0''$
Graphical Path Synthesis

Prescribed: P_1, P_2, P_3

Free Choices:
1. A_0 and B_0
2. Input link length
3. Initial input link angle

Procedure:
3. Locate B_1 with perpendicular bisectors
Graphical Path Synthesis

Prescribed: P_1, P_2, P_3

Free Choices:
1. A_0 and B_0
2. Input link length
3. Initial input link angle

Procedure:
4. Draw final mechanism
Graphical Path Synthesis: Free Choices

Prescribed: P_1, P_2, P_3

Free Choices:
1. A_0 and B_0
2. Input link length
3. Initial input link angle
Mechanism Timing

- Timing: Specifying input link rotation between precision positions
<table>
<thead>
<tr>
<th>Path Generation</th>
<th>Prescribed</th>
<th>Free Choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>without Timing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>with Timing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Path with Timing Synthesis Procedure

I. Find r_2 and β_1 using kinematic inversion grounding input link

II. Find B_1 as done in Path w/o Timing synthesis
Graphical Path w/ Timing, Part I

Prescribed: $P_1, P_2, P_3, \beta_2=45^\circ, \beta_3=75^\circ$

Procedure:
1. Pick A_0
2. Draw A_0P_2 & A_0P_3
3. Invert (ground input link)
 a) Locate P_2' by rotating P_2A_0 by $-\beta_2$ about A_0
 b) Locate P_3' by rotating P_3A_0 by $-\beta_3$ about A_0
Graphical Path w/ Timing, Part I

Prescribed: \(P_1, P_2, P_3, \beta_2=45^\circ, \beta_3=75^\circ \)

Procedure:
1. Pick \(A_0 \)
2. Draw \(A_0P_2 \) & \(A_0P_3 \)
3. Invert (ground input link)
 a) Locate \(P_2' \) by rotating \(P_2A_0 \) by \(-\beta_2\) about \(A_0 \)
 b) Locate \(P_3' \) by rotating \(P_3A_0 \) by \(-\beta_3\) about \(A_0 \)
4. Find \(A_1 \) at center of \(P_1, P_2', P_3' \)
Graphical Path w/ Timing, Part I

Prescribed: \(P_1, P_2, P_3, \beta_2=45^\circ, \beta_3=75^\circ \)

Procedure:
1. Pick \(A_0 \)
2. Draw \(A_0P_2 \) & \(A_0P_3 \)
3. Invert (ground input link)
 a) Locate \(P_2' \) by rotating \(P_2A_0 \) by \(-\beta_2\) about \(A_0 \)
 b) Locate \(P_3' \) by rotating \(P_3A_0 \) by \(-\beta_3\) about \(A_0 \)
4. Find \(A_1 \) at center of \(P_1, P_2', P_3' \)
5. Repeat Path w/o Timing Synthesis
Graphical Path w/ Timing, Part I

Prescribed: $P_1, P_2, P_3, \beta_2=45^\circ, \beta_3=75^\circ$

Procedure:
1. Pick A_0
2. Draw A_0P_2 & A_0P_3
3. Invert (ground input link)
 a) Locate P_2' by rotating P_2A_0 by $-\beta_2$ about A_0
 b) Locate P_3' by rotating P_3A_0 by $-\beta_3$ about A_0
4. Find A_1 at center of P_1, P_2', P_3'
5. Repeat Path w/o Timing Synthesis