Feedforward control

1. Suppose objective now to track an arbitrary reference \(r(t) \). Assume it is differentiable.

2. Design a closed loop control system to reject disturbance and reduce system model uncertainty
 a. \(P \) or \(P-I \) etc.

3. Find a closed loop transfer function \(G_c(s) \) from command input \(r_1(t) \) to output \(y(t) \)

4. Define a feedforward controller \(G_{ff}(s) \) to be \(G_c^{-1}(s) \), such that \(R_1(s) = G_{ff}(s) \ R(s) \)

5. Check closed loop transfer function \(G_{YR}(s) \) from \(R(s) \) to \(Y(s) \)

6. \(G_{ff}(s) \) is likely not proper (numerator order is higher than denominator order). In implementation, improperness is implemented by differentiation. Separate \(G_{ff}(s) \) into proper and improper terms using long division.

7. How does \(G_{YR}(s) \) change if the open loop system model is not accurate? i.e. \(G_{ff}(s) \) is designed based on model but actual \(G_{YR}(s) \) is based on actual system.
 a. Effect in low frequency ?
 b. Effect in high frequency ?
 (depends on which controller you choose for the closed loop system)

Summary: When is feedforward a good idea, when is it a bad idea?